
 1

Abstract—In this paper we analyze the neutron sensitivity of

GPU devices when executing a Fast Fourier Transform
algorithm. The provided experimental results demonstrate that
in the majority of cases the output is affected by multiple errors,
caused by thread and data dependencies. ECC is experimentally
proved not to be sufficient to provide high reliability.
Experimental data and analytical studies are employed to design
specific software-based hardening strategies, which are validated
through fault-injection.

Index Terms—GPU, FFT, neutron sensitivity, ECC, software-
based hardening strategies

I. INTRODUCTION
HE Fast Fourier Transform (FFT) is one of the most
representative algorithms in high performance computing.

FFT algorithms are used in several applications such as signal
processing, vibration and spectrum analysis, speech
processing, communication, linear algebra, statistics, 3D
reconstruction, and stock options pricing determination [1][2].
 Nowadays, every desktop computer, laptop or portable
device includes at least one Graphics Processing Unit (GPU),
mainly used as a support for the CPU to accelerate graphics
rendering. Due to their highly parallel structure, GPUs are
more effective than general-purpose CPUs when large blocks
of data need to be processed in parallel, and have recently
become popular for high performance computing. For instance
TITAN, one of the most powerful of current supercomputers,
is built using 18,000 GPUs.

We have already demonstrated in [3][4] that radiation-
induced errors, including those generated from the terrestrial
neutron radiation environment, are one of the major issues for
the newest GPU cores reliability. However, only few papers
describe possible radiation test methods for extreme parallel

P. Rech, L. L. Pilla, P. O. A. Navaux, and L. Carro are with the Instituto de

Informática, Federal University of Rio Grande do Sul (UFRGS), Av. Bento
Gonçalves, 9500 - Campus do Vale - Bloco IV, Porto Alegre, RS, Brazil
(phone : +55 (51) 3308-6806, fax : +55 (51) 3308-7308 email : {prech, llpilla,
navaux, carro} @inf.ufrgs.br)

F. Silvestri is with the Dipartimento di Ingegneria dell’Informazione,
Padova University, Italy (email: silvest1@dei.unipd.it)

C. Frost is with STFC, Rutherford Appleton Laboratories, Didcot, UK
(email: christopher.frost@stfc.ac.uk)

M. Sonza Reorda is with the Dipartimento di Informatica e Automatica,
Politecnico di Torino, Italy (email: matteo.sonzareorda@polito.it)

This work has been partially supported by CAPES, Brazil and the European
Commission through the LoRelei project (PIRSES-GA-2011-295231).

systems and fewer analyze the behavior of parallel algorithms
in radiation environments.

In this paper we deeply investigate the behavior of a parallel
version of the FFT algorithm executed on a GPU irradiated
with neutrons. The results of extensive radiation test
campaigns attest that the FFT algorithm experiences a very
high error rate and in the majority of the cases the FFT output
is affected by multiple errors. As demonstrated with algorithm
and architectural analyzes, multiple errors occur mainly
because the FFT computation requires sequential iterations:
hence, a thread output may depend on previously executed
threads. If in a given iteration a thread is corrupted by
radiation, the error is likely to spread over the following
iterations leading to multiple output errors.

We experimentally prove that the Error Correction Code
(ECC) available in the latest GPUs is not sufficient to ensure
by itself a high reliability. In this work we propose two
dedicated software-based hardening strategies for the FFT
algorithm executed on a GPU, both based on the Algorithm
Based Fault Tolerance (ABFT) philosophy [5]. The first
hardening strategy we design takes advantage of the FFT
properties demonstrated in [6], and applies them in the GPU
algorithm to detect faulty executions. We then extend the
proposed ABFT approach to achieve prompt error detection
and prevent errors propagation. Finally, the computational
overhead of the proposed hardening technique is evaluated
and their efficiency is proved through fault-injection.

II. EXPERIMENTAL METHODOLOGY AND TESTED DEVICES

A. Neutron Beam
Radiation experiments were performed at ISIS facility in

the Rutherford Appleton Laboratories (RAL) in Didcot, UK
[7]. The available neutron flux was of about 5.5x104 n/(cm2·s).
The beam was focused on a spot with a diameter of 2 cm plus
1 cm of penumbra, which was enough to fully and
homogenously irradiate the GPU chip without directly
affecting nearby board power control circuitry and DDR
memories. Nevertheless, even if the beam is collimated,
scattering neutron may still wander from the beam spot, thus
we periodically check it during experiments to ensure that the
DDR content was consistent during our experience, and no
error has been observed. It is worth noting that input and
output data were stored in the DDR, and no cache memory
was employed, so the errors reported in the following sections
were only caused by the corruption of the GPU core logic

Neutron Sensitivity and Hardening Strategies
for Fast Fourier Transform on GPUs

P. Rech, L. L. Pilla, F. Silvestri, C. Frost, P. O. A. Navaux, M. Sonza Reorda, and L. Carro

T

 2

resources or internal flip-flops. Irradiation was performed at
room temperature with normal incidence and nominal
voltages.

B. Tested Devices
We tested commercial-off-the-shelves Tesla C2050 GPUs

designed by NVIDIA and manufactured in a 40nm technology
node. The C2050 includes 14 Streaming Multiprocessors
(SMs), each of which is divided in 32 CUDA cores [8]. In the
C2050 GPU 14 blocks of threads can be executed in parallel
with a maximum of 32 threads in each block for a total of 448
threads. If more threads or blocks are instantiated, their
execution will be delayed until they can be scheduled.

NVIDIA provides the newest GPUs, like the C2050 family,
with an internal Error Correction Code (ECC) able to correct
single errors and detect double errors, mechanism that can be
activated by the user. The ECC was disabled to evaluate the
FFT sensitivity to neutrons. A discussion on the efficiency and
drawbacks of the NVIDIA ECC mechanism takes place in the
following section.

It is worth noting that the delayed blocks input vectors as
well as the results of computation are stored in the GPU board
DDR, which were not irradiated. On a realistic application, the
higher number of blocks may extend the exposure time of
input or output data, increasing the probability of having them
corrupted by neutrons. However, DDR sensitivity has been
proved to decrease with the shrinking of technology nodes [9],
and modern DDR chips are provided with efficient ECC that
increase of several orders of magnitudes the device reliability
[10]. It is then reasonable to consider negligible, even on a real
application, the probability for GPU input or output vectors to
be corrupted.

C. Tested Fast Fourier Transform Code
We tested under radiation a benchmark that implements

512x512 1D-FFTs of 64-points each. The FFT input is
composed of a 64x512x512 double precision floating-point
matrix for the real part and a 64x512x512 matrix for the
imaginary part. We choose to test relatively small FFTs (64-
points) to limit the number of iterations and ease the study of
errors propagation, while having 512x512 1D-FFTs eases the
gathering of a statistically significant amount of errors.

A thread acts like a butterfly module [6] updating the values
of two floating-point elements in the complex matrix using the
values of two elements computed in the previous iteration as
inputs (see Fig. 1). The implemented algorithm is based on the

FT kernel of the NAS Parallel Benchmarks [11] implemented
in C and ported to the GPU architecture using CUDA. As
represented in Fig. 2, each 64-points 1D FFT kernel is
composed of 6 sequential iterations (log264=6) of a variant of
the Stockham FFT algorithm [12].

For all iterations, the GPU instantiates 512x512 parallel
threads, grouped in blocks of 512 threads each. A thread is in
charge of evaluating the intermediate FFT values on the
assigned complex vector of size 64.

III. EXPERIMENTAL RESULTS AND DISCUSSION
Table I reports the experimentally measured cross sections

and the FIT for the tested FFT code. The FFT algorithm gives
complex double precision floating point data as an output,
which is then divided in real and imaginary parts. An
execution is considered as faulty if at least one difference with
respect to the expected value is detected in the real, imaginary,
or both, part of the output. The cross section is obtained
dividing the number of faulty executions per unit time by the
flux. Reported values confirm that GPUs are extremely prone
to be corrupted by neutrons.

Table II shows the percentage of faulty executions of the
FFT algorithm in which the real or imaginary part was
detected as corrupted as well as the cross section and FIT of
just the real and imaginary part. Some executions experienced
errors just in the imaginary part or just in the real part even if
the implemented algorithm is symmetric for the real and
imaginary parts. These errors are caused by the corruption of
internal registers used by the thread for storing the
intermediate values of the complex number. As stated in the
second column of Table II, in less than 5% of the executions
considered as faulty no error was detected in the real part. This
means that in those executions the FFT experienced an error
just in the imaginary part. The same considerations apply to
errors in the imaginary part only, which are less than 4% of
the overall faulty executions.

The FFT algorithm is composed of threads that are not
independent, since a thread uses the output of previously
executed threads to update the real and imaginary part of two
complex elements (see Fig. 1). It is then very likely that a
radiation-induced event affecting a thread in the early stages
of the FFT execution will spread, affecting various bits of the

Fig. 2: In each iteration a thread updates two-by-two all the 64 values of
the FFT using the basic butterfly module. 6 iterations are necessary to
complete execution. If an operation in one iteration is corrupted by
radiation, two (or more) values will be wrongly updated, and the number
of errors will double in the following iteration.

Fig. 1: A basic butterfly module used to update two-by-two all the 64
elements composing the FFT

 3

output (see Fig. 2).
As a thread is in charge of updating two complex values, a

radiation induced error that prevents the thread from
completing its execution or corrupts the thread input data
produces at least two output errors. Nevertheless, a single
error in a thread can be generated by the corruption of the
internal register that stores the value of just one of the two
elements to update, or disturbing just one of the operations
needed to calculate the FFT. The thread can then complete its
execution, allowing the correct calculation of the second
complex number. Single output errors occur in the FFT only if
such a single thread error occurs in the last iteration. As stated
in Table III, this occurred in just 1.63% of the faulty
executions for the real and in 4% of the faulty executions for
the imaginary part.

The importance of the occurrences of multiple errors in
realistic applications is highlighted in the last row of Table III,
in which the FIT values of FFT executions affected by single
or multiple errors in the real and imaginary parts are reported.

The experimentally observed multiple errors distributions
are shown in Fig. 3. It is worth noting that in most of the cases
64 or less output values were found corrupted, and those
locations belong to the same 64-point FFT. These errors
patterns are caused by error propagation from one iteration to
the following ones in the same 64-points FFT, as represented
in Fig. 2. As said, the amount of errors is likely to double at
each iteration, thus it is very unlikely to have an odd number
of errors in the output, and this is in agreement with
experimental data (see Fig. 3).

The worst case for a 64-points FFT occurs when radiation
affects a thread in its first iteration. If a single error is
produced in one thread in the first iteration, at each of the
following 5 iterations (there are 6 iterations in total) the
number of errors is doubled, and 25=32 errors appear in the
output. A double thread error is produced when radiation
prevents the thread from completing its execution generating a
functional interruption or corrupting the thread input. In this
situation 64 output errors are to be expected in the FFT. It is
improbable to have between 32 and 64 errors in the output
vector. In fact, as it is very unlikely to have two neutrons
corrupting the GPU in a FFT execution, the only way of

having more than 32 errors is to have a thread in the first
iteration to generate two errors that spread to 64 errors in the
output.

Finally, only few executions experienced more than 64
errors in the output. This rare situation occurs when radiation
leads a SM to experience a functional interruption preventing
a whole warp of 32 threads or even a whole block of 512
threads from completing their execution, possibly affecting
more than one 64-points FFT outputs. Those errors will then
spread and a huge amount of errors are expected at the output.

IV. HARDENING STRATEGIES FOR N-POINT FFTS

A. NVDIA Error Correction Code
NVIDIA latest GPUs, including the irradiated C2050s, are

provided with an ECC mechanism that can be activated or
deactivated by the user. The ECC is applied to the cache and
to the internal memory of the SM, and it is able to correct
single error and detect double errors [13].

When the ECC is turned ON the 12.5% of the device
memory becomes unavailable to the user and, as reported in
Tab. IV, the execution time of the 512x512 64-points FFTs is
increased of about 50%. Depending on the algorithm and
device, typically the ECC reduces the GPU performances in

TABLE I
512X512 64-POINTS FFTS CROSS SECTION AND FIT AT NYC

 Cross section FIT
FFT 3.69�10-6cm2 5.17�105

TABLE II

REAL AND IMAGINARY PART PERCENTAGE, CROSS SECTION, AND FIT

 Percentage Cross section FIT
FFT Real 94.96% 3.50�10-6cm2 4.90�105
FFT Imaginary 96.17% 3.55�10-6cm2 4.97�105

TABLE III

512X512 64-POINTS FFTS SINGLE AND MULTIPLE ERRORS

 FFT Real FFT Imaginary
 Single Multiple Single Multiple
Percentage 1.61% 98.39% 4.00% 96.00%
FIT 7.89�103 4.82�105 19.80�103 4.67�105

Fig. 3: FFT real and imaginary multiple output errors FIT. Consequent distributions that were never experimentally observed are grouped in the
picture (it is the case of 9 to 11 errors, 20 and 21 etc.).

 4

the range of 20-30% [13]. The computational and area
overhead introduced by the NVIDIA ECC are then far from
being negligible and may compromise the GPU efficiency.

Unfortunately, no detailed information about the
implementation of the ECC is currently available. The analysis
of the ECC efficiency and drawbacks is then limited to what
was experimentally observed.

When the ECC was enabled on the irradiated GPU the
observed number of output errors was reduced by about one
order of magnitude. In particular, no single output error
occurred, while multiple errors patterns formed of 64 or more
corrupted locations were still observed. This is mainly because
SM functional interruptions and scheduler failures that prevent
threads from completing execution are not detected by the
ECC.

B. Algorithm-Based Fault Tolerance for FFT
In order to achieve higher error detection capabilities we

design an ABFT technique for the FFT. The proposed
hardening strategy derives from a clever fault-free N-points
FFT network of N processors presented in [6], which is based
on the superposition principle of linear systems and the
circular shift property of the FFT. The basic idea is to detect
errors induced in any processor or connection with the use of
input coding and checksum comparison at the output.

We implement the fault-free network in software in the
GPU viewing each thread in the GPU as a processor in the
network (i.e., a butterfly module). Each CUDA core in a GPU
can be considered as an isolated unit such that a radiation-
induced event in one CUDA core only corrupts the thread
assigned to it. Threads that follow the corrupted one or threads
assigned to computing units near the faulty one will not be
affected. This maintains the same set of premises of [6], and
hence the same mathematical demonstration ensuring the
correctness and efficacy of the approach can be applied.

Only few code modifications are needed to implement the
ABFT for FFT (see Fig. 4). The input sequence of N complex
elements x(i) is encoded in the sequence, x’(i), defined by Eq.1

(1) 𝑥" i = 	 		2 ∙ 𝑥 𝑖 + 𝑥 i + 1 					0 ≤ 𝑖 < 𝑁 − 1
2 ∙ 𝑥 𝑖 + 𝑥 0 					𝑖 = 𝑁 − 1

The FFT is then evaluated using the coded values x’ as

inputs and, when calculation is completed, the output X’ is
decoded through Eq. 2

2 													𝑋 𝑘 = 2

3456
78 ∙ 𝑋" 𝑘 						0 ≤ 𝑘 < 𝑁

where wN

-k are the Nth roots of the unity. The N decoded
results are then summed, generating a checksum. As formally

demonstrated in [6] this encoding and decoding scheme gives
each output a nontrivial weighted contribution to the
checksum such that any error will cause a detectable error
syndrome. After computation, the checksum is compared to
N·x(0) and any mismatch will identify the FFT as faulty, and
will require re-computation.

Tab. V reports the execution time of the hardened version of
the FFT, named ABFT-FFT, running on the GPU with ECC
disabled. As it can be noticed, the overhead is comparable to
the one introduced by the ECC. However, the memory
overhead introduced in the ABFT-FFT is limited to
checksums to compare: hence it is constant and definitely
lower than the ECC one.

In order to inject errors during the execution of the ABFT-
FFT we instantiate an additional thread in the code,
independent from the ones composing the ABFT-FFT
algorithm, which modifies the data stored in the output
register of other threads using probabilities of injection that
derive directly from the experimental results reported in the
previous section. All the injected errors, including SM and
threads functional interruptions, were detected using the
designed hardening strategy and the re-computation of the
FFT marked as faulty was performed. As reported in Table V,
when errors occur, the execution time of the ABFT-FFT is
actually not increased. This happens because the overhead of
re-computing just one 1D-FFT is hidden by the execution of
concurrent threads executing the remaining (512x512)-1 FFTs.
The same happens when forcing errors in all threads in a given
block, re-computing some 1D-FFTs.

C. Extended Algorithm-Based Fault Tolerance for FFT
As stated in previous sections, when an error occurs in one

iteration, it is likely to spread to the following ones: therefore,
a prompt detection of the error is crucial to prevent error
propagation. The ABFT-FFT hardening strategy has the
ability of detecting all the experimentally observed error
patterns, but requires re-computation in order to provide the
correct output, introducing a not negligible overhead. It is
worth noting that bigger FFTs than the tested ones are
typically executed on GPUs. In Tab. V the execution time of a
single FFT of various dimensions are reported, for the un-
hardened version and for the proposed ABFT-FFT. As it can
be noticed, in the event of errors the FFT re-computation
drastically affects the ABFT-FFT performances. In the case of

TABLE IV
FFT EXECUTION TIMES

 ECC OFF ECC ON Overhead
512x512 64-points FFT 106 ms 159 ms 50%

Fig. 4: FFT Hardening scheme. The 64 input complex elements are
coded, then the 64-points FFT is performed with the classical algorithm,
and output is decoded. Errors are detected comparing the checksum
generated summing the output values with Nx0.

 5

a single 4096-points FFT, if an error occurs the ABFT-FFT
execution time is 2.5 times higher than the unhardened code
one (last column of Tab. VI).

To reduce the re-computation overhead we devised an
extended ABFT-FFT strategy, named Ext ABFT-FFT. The
basic idea is that the ABFT proposed in the previous sub-
section can be repeatedly applied to small portions of the
computation, leading to prompt error detections and reduced
re-computation costs. More in details, we can compute smaller
FFTs diving the original problem into smaller sub-problems,
using the well-known propriety that a N-point FFT can be
decomposed into N1 FFTs on N2 points and N2 FFTs on N1
points, where N1·N2=N. Then, we can still use the ABFT-
FFT strategy but calculating x’ (see Eq. 1) on the smaller FFTs
that compose the sub-problems. Each sub-problem can be
solved either recursively applying the Ext-ABFT application
or using directly the ABFT-FFT.

The main advantage of such a sub-problems division is that
error can be detected on a sub-problem, and only the corrupted
sub-problem needs to be re-computed in the event of an error.
When all sub-problems have been correctly computed, the
extended ABFT-FFT strategy is completed by computing the
FFT using Eq. 2 and performing a final check.

The Ext ABFT-FFT is then modular, as its formal
correctness is independent on the size of the sub-problems.
The smaller the sub-problems are, the more prompt errors
detection will be and the lower the re-computation overhead
will be. However, checksums have to be calculated for each
sub-problem, so the higher the number of sub-problems, the
higher the overhead for checksums will be. The user can select
the best trade-off between the overhead required for re-
computation in a coarse-grained version and the overhead
introduced in the checksum evaluations on a fine-grained
version.

It is worth noting that the Ext ABFT-FFT re-computes the
whole FFT only if an error occurs while preparing the sub-
problem inputs or while computing Eq. 2, which is very
unlikely to happen. In fact, there are only O(N) critical

operations that can induce the whole re-computation. In
contrast, in the standard ABFT-FFT all the O(NlogN)
operations can induce the whole re-computation.

V. CONCLUSIONS
The FFT algorithm executed by GPUs is a powerful tool for

many applications but, unfortunately, it is very prone to
experience neutron-induced errors. The FFT characteristic
thread and data dependency of the algorithm let the errors to
spread, generating a huge amount of multiple output errors.

To increase the reliability of GPUs, NVIDIA introduced an
ECC, which reduces errors but also reduces both the memory
availability and the performances of the device. An alternative
to the ECC is the Algorithm-Based Fault Tolerance technique
we implemented on the GPU, which is based on a known
fault-free FFT network, that was demonstrated through fault-
simulation to be able to detect all the experimentally observed
errors. We extended this strategy making it modular, so that
the user can decide the best trade-off between checksum
calculation and re-computation overheads.

REFERENCES
[1] J.D. Owens, M. Houston, D. Luebke, S. Green, J.E. Stone, and J.C.

Phillips, “GPU Computing” Proceedings of the IEEE, vol.96, no.5,
pp.879-899, May 2008.

[2] J. Kruger and R. Westermann, “Linear Algebra operators for GPU
implementation of numerical algorithms”, ACM Trans. Graph. n. 22,
vol. 3, 2003, pp. 908-916.

[3] P. Rech, C. Aguiar, R. Ferreira, M. Silvestri, A. Griffoni, C. Frost, and
L. Carro, “Neutron-Induced Soft Error in Graphic Processing Units”, in
proc. IEEE REDW 2012, Miami, FL, USA.

[4] P. Rech, C. Aguiar, C. Frost, and L. Carro, “An Efficient and
Experimentally Tuned Software-Based Hardening Strategy for Matrix
Multiplication on GPUs”, IEEE Trans. Nucl. Sci, n. 4, vol 60, 2013, pp.
2797-2804.

[5] M.D. Lerner, “Algorithm Based Fault Tolerance in Massively Parallel
Systems”, Columbia University, 1988

[6] J.-Y. Jou, J.A. Abraham, “Fault-Tolerant FFT Networks”, IEEE
Transactions on Computers, Vol. 37, No. 5, May 1988, pp. 548-561

[7] M. Violante, et al., “A New Hardware/Software Platform and a New 1/E
Neutron Source for Soft Error Studies: Testing FPGAs at the ISIS
Facility”, IEEE Trans. Nucl. Sci., vol. 54, no. 4, pp. 1184-1189

[8] NVIDIA Tesla C2050/C2075 GPU Datasheet.
[9] I. S. Haque and V. S. Pande, "Hard Data on Soft Errors: A Large- Scale

Assessment of Real-World Error Rates in GPGPU," In Proceedings of
the IEEE/ACM International Conference on Cluster, Cloud and Grid
Computing, pp. 691-696, 2010

[10] J.W. Sheaffer, D.P. Luebke, and K. Skadron, "A Hardware Redundancy
and Recovery Mechanism for Reliable Scientific Computation on
Graphics Processors," In Proceedings of the ACM SIGGRAPH
Symposium on Graphics Hardware (GH), pp. 55-64, 2007

[11] D. Bailey, et al., “The NAS Parallel Benchmarks”, RNR Technical
Report RNR-94-007, March 1994.

[12] T. G. Stockham, “High-Speed Convolution and Correlation”, in proc.
Spring Joint Computer Conference, 1966, pp. 229-233.

[13] NVIDIA BENCH: Tesla C2050 Performance Benchmarks

TABLE V
512X512 64-POINTS FFT AND ABFT-FFT EXECUTION TIMES

 FFT ABFT overhead
no error 106 ms 161ms 55%
errors injected 106 ms 161ms 55%

TABLE VI

1-D FFT AND FFT-ABFT EXECUTION TIMES
AS A FUNCTION OF FFT DIMENSION

 64 256 1024 2048 4096
FFT 0.15ms 0.67ms 3.14ms 6.76ms 14.53ms
ABFT-no errors 0.24ms 0.99ms 4.27ms 8.85ms 19.41ms
ABFT-errors 4.67ms 1.99ms 8.64ms 17.95ms 37.38ms

